Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 165
Filter
1.
Toxicol Sci ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710495

ABSTRACT

Constitutive Androstane Receptor (CAR, Nr1i3), a liver nuclear receptor and xenobiotic sensor, induces drug, steroid and lipid metabolizing enzymes, stimulates liver hypertrophy and hyperplasia, and ultimately, hepatocellular carcinogenesis. The mechanisms linking early CAR responses to later disease development are poorly understood. Here we show that exposure of CD-1 mice to TCPOBOP, a halogenated xenochemical and selective CAR agonist ligand, induces pericentral steatosis marked by hepatic accumulation of cholesterol and neutral lipid, and elevated circulating alanine aminotransferase, indicating hepatocyte damage. TCPOBOP-induced steatosis was weaker in the pericentral region but stronger in the periportal region in females compared to males. Early (1-day) TCPOBOP transcriptional responses were enriched for CAR-bound primary response genes, and for lipogenesis and xenobiotic metabolism and oxidative stress protection pathways; late (2-wk) TCPOBOP responses included many CAR binding-independent secondary response genes, with enrichment for macrophage activation, immune response and cytokine and reactive oxygen species production. Late upstream regulators specific to TCPOBOP-exposed male liver were linked to pro-inflammatory responses and hepatocellular carcinoma progression. TCPOBOP administered weekly to male mice using a high corn oil vehicle activated carbohydrate-responsive transcription factor (MLXIPL)-regulated target genes, dysregulated mitochondrial respiratory and translation regulatory pathways, and induced more advanced liver pathology. Overall, TCPOBOP exposure recapitulates histological and gene expression changes characteristic of emerging steatotic liver disease, including secondary gene responses in liver non-parenchymal cells indicative of transition to a more advanced disease state. Upstream regulators of both the early and late TCPOBOP response genes include novel biomarkers for foreign chemical-induced metabolic dysfunction-associated steatotic liver disease.

2.
Elife ; 122023 Dec 13.
Article in English | MEDLINE | ID: mdl-38091606

ABSTRACT

Sex differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase-I hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the dynamic, pituitary hormone-dependent male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K9me3 at male-biased DHS in female liver and H3K27me3 at female-biased DHS in male liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.


Subject(s)
Chromatin , Growth Hormone , Humans , Female , Mice , Male , Animals , Growth Hormone/metabolism , Chromatin/metabolism , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Histones/metabolism , Epigenesis, Genetic , Liver/metabolism
3.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37662275

ABSTRACT

Sex-differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the pituitary hormone-dependent dynamic male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K27me3 at female-biased DHS in male liver, and H3K9me3 at male-biased DHS in female liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.

4.
bioRxiv ; 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37131727

ABSTRACT

Background and Aims: Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with one available treatment, N-acetyl cysteine (NAC). Yet, NAC effectiveness diminishes about ten hours after APAP overdose, urging for therapeutic alternatives. This study addresses this need by deciphering a mechanism of sexual dimorphism in APAP-induced liver injury, and leveraging it to accelerate liver recovery via growth hormone (GH) treatment. GH secretory patterns, pulsatile in males and near-continuous in females, determine the sex bias in many liver metabolic functions. Here, we aim to establish GH as a novel therapy to treat APAP hepatotoxicity. Approach and Results: Our results demonstrate sex-dependent APAP toxicity, with females showing reduced liver cell death and faster recovery than males. Single-cell RNA sequencing analyses reveal that female hepatocytes have significantly greater levels of GH receptor expression and GH pathway activation compared to males. In harnessing this female-specific advantage, we demonstrate that a single injection of recombinant human GH protein accelerates liver recovery, promotes survival in males following sub-lethal dose of APAP, and is superior to standard-of-care NAC. Alternatively, slow-release delivery of human GH via the safe nonintegrative lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP), a technology validated by widely used COVID-19 vaccines, rescues males from APAP-induced death that otherwise occurred in control mRNA-LNP-treated mice. Conclusions: Our study demonstrates a sexually dimorphic liver repair advantage in females following APAP overdose, leveraged by establishing GH as an alternative treatment, delivered either as recombinant protein or mRNA-LNP, to potentially prevent liver failure and liver transplant in APAP-overdosed patients.

5.
Toxicol Appl Pharmacol ; 471: 116550, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37172768

ABSTRACT

The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.


Subject(s)
Fatty Liver , Liver Diseases , Polychlorinated Dibenzodioxins , RNA, Long Noncoding , Mice , Animals , Polychlorinated Dibenzodioxins/toxicity , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Xenobiotics/metabolism , Liver , Fatty Liver/metabolism , Liver Diseases/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Cell Communication , RNA, Small Nuclear/metabolism , RNA, Small Nuclear/pharmacology
6.
Metabolism ; 144: 155589, 2023 07.
Article in English | MEDLINE | ID: mdl-37182789

ABSTRACT

BACKGROUND: Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function. APPROACH: To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps. RESULTS: Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved. CONCLUSION: These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression.


Subject(s)
Human Growth Hormone , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Male , Mice , Animals , Lipogenesis/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Insulin Resistance/physiology , Liver/metabolism , Growth Hormone/metabolism , Insulin/metabolism , Glycolysis , Glucose/metabolism , Human Growth Hormone/metabolism
7.
RNA ; 29(7): 977-1006, 2023 07.
Article in English | MEDLINE | ID: mdl-37015806

ABSTRACT

LncRNAs comprise a heterogeneous class of RNA-encoding genes typified by low expression, nuclear enrichment, high tissue-specificity, and functional diversity, but the vast majority remain uncharacterized. Here, we assembled the mouse liver noncoding transcriptome from >2000 bulk RNA-seq samples and discovered 48,261 liver-expressed lncRNAs, a majority novel. Using these lncRNAs as a single-cell transcriptomic reference set, we elucidated lncRNA dysregulation in mouse models of high fat diet-induced nonalcoholic steatohepatitis and carbon tetrachloride-induced liver fibrosis. Trajectory inference analysis revealed lncRNA zonation patterns across the liver lobule in each major liver cell population. Perturbations in lncRNA expression and zonation were common in several disease-associated liver cell types, including nonalcoholic steatohepatitis-associated macrophages, a hallmark of fatty liver disease progression, and collagen-producing myofibroblasts, a central feature of liver fibrosis. Single-cell-based gene regulatory network analysis using bigSCale2 linked individual lncRNAs to specific biological pathways, and network-essential regulatory lncRNAs with disease-associated functions were identified by their high network centrality metrics. For a subset of these lncRNAs, promoter sequences of the network-defined lncRNA target genes were significantly enriched for lncRNA triplex formation, providing independent mechanistic support for the lncRNA-target gene linkages predicted by the gene regulatory networks. These findings elucidate liver lncRNA cell-type specificities, spatial zonation patterns, associated regulatory networks, and temporal patterns of dysregulation during hepatic disease progression. A subset of the liver disease-associated regulatory lncRNAs identified have human orthologs and are promising candidates for biomarkers and therapeutic targets.


Subject(s)
Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding , Humans , Mice , Animals , Transcriptome , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Regulatory Networks , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Gene Expression Profiling , Disease Progression
8.
bioRxiv ; 2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36711947

ABSTRACT

The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.

9.
Science ; 378(6617): 252-253, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36264790
10.
Cancer Res Commun ; 2(4): 246-257, 2022 04.
Article in English | MEDLINE | ID: mdl-36187936

ABSTRACT

Many patients with breast cancer have a poor prognosis with limited therapeutic options. Here, we investigated the potential of chemo-immunogenic therapy as an avenue of treatment. We utilized two syngeneic mouse mammary tumor models, 4T1 and E0771, to examine the chemo-immunogenic potential of cyclophosphamide and the mechanistic contributions of cyclophosphamide-activated type-I interferon (IFN) signaling to therapeutic activity. Chemically-activated cyclophosphamide induced robust IFNα/ß receptor-1-dependent signaling linked to hundreds of IFN-stimulated gene responses in both cell lines. Further, in 4T1 tumors, cyclophosphamide given on a medium-dose, 6-day intermittent metronomic schedule induced strong IFN signaling but comparatively weak immune cell infiltration associated with long-term tumor growth stasis. Induction of IFN signaling was somewhat weaker in E0771 tumors but was followed by widespread downstream gene responses, robust immune cell infiltration and extensive, prolonged tumor regression. The immune dependence of these effective anti-tumor responses was established by CD8 T-cell immunodepletion, which blocked cyclophosphamide-induced E0771 tumor regression and led to tumor stasis followed by regrowth. Strikingly, IFNα/ß receptor-1 antibody blockade was even more effective in preventing E0771 immune cell infiltration and blocked the major tumor regression induced by cyclophosphamide treatment. Type-I IFN signaling is thus essential for the robust chemo-immunogenic response of these tumors to cyclophosphamide administered on a metronomic schedule.


Subject(s)
Brain Neoplasms , Interferon Type I , Mice , Animals , Brain Neoplasms/drug therapy , Administration, Metronomic , Cyclophosphamide/pharmacology , Immunity, Innate , Interferon Type I/pharmacology , Disease Models, Animal
11.
Mol Cell Endocrinol ; 557: 111722, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35917881

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) is a key mediator of lipid metabolism and metabolic stress in the liver. A recent study revealed that PPARα-dependent long non-coding RNAs (lncRNAs) play an important role in modulating metabolic stress and inflammation in the livers of fasted mice. Here hepatic lncRNA 3930402G23Rik (G23Rik) was found to have active peroxisome proliferator response elements (PPREs) within its promoter and is directly regulated by PPARα. Although G23Rik RNA was expressed to varying degrees in several tissues, the PPARα-dependent regulation of this lncRNA was only observed in the liver. Pharmacological activation of PPARα induced PPARα recruitment at the G23Rik promoter and a pronounced increase in hepatic G23Rik lncRNA expression. A G23Rik-null mouse line was developed to further characterize the function of this lncRNA in the liver. G23Rik-null mice were more susceptible to hepatic lipid accumulation in response to acute fasting. Histological analysis further revealed a pronounced buildup of lipid droplets and a significant increase in neutral triglycerides and lipids as indicated by enhanced oil red O staining of liver sections. Hepatic cholesterol, non-esterified fatty acid, and triglyceride levels were significantly elevated in G23Rik-null mice and associated with induction of the lipid-metabolism related gene Cd36. These findings provide evidence for a lncRNA dependent mechanism by which PPARα attenuates hepatic lipid accumulation in response to metabolic stress through lncRNA G23Rik induction.


Subject(s)
Fasting , Lipid Metabolism , Liver , RNA, Long Noncoding , Animals , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/pharmacology , Lipid Metabolism/genetics , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/genetics , PPAR alpha/metabolism , Peroxisome Proliferators/metabolism , Peroxisome Proliferators/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triglycerides/metabolism
12.
Endocrinology ; 163(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-35512247

ABSTRACT

The zonation of liver metabolic processes is well-characterized; however, little is known about the cell type-specificity and zonation of sexually dimorphic gene expression or its growth hormone (GH)-dependent transcriptional regulators. We address these issues using single-nucleus RNA-sequencing of 32 000 nuclei representing 9 major liver cell types. Nuclei were extracted from livers from adult male and female mice; from males infused with GH continuously, mimicking the female plasma GH pattern; and from mice exposed to TCPOBOP, a xenobiotic agonist ligand of the nuclear receptor CAR that perturbs sex-biased gene expression. Analysis of these rich transcriptomic datasets revealed the following: 1) expression of sex-biased genes and their GH-dependent transcriptional regulators is primarily restricted to hepatocytes and is not a feature of liver nonparenchymal cells; 2) many sex-biased transcripts show sex-dependent zonation within the liver lobule; 3) gene expression is substantially feminized both in periportal and pericentral hepatocytes when male mice are infused with GH continuously; 4) sequencing nuclei increases the sensitivity for detecting thousands of nuclear-enriched long-noncoding RNAs (lncRNAs) and enables determination of their liver cell type-specificity, sex-bias and hepatocyte zonation profiles; 5) the periportal to pericentral hepatocyte cell ratio is significantly higher in male than female liver; and 6) TCPOBOP exposure disrupts both sex-specific gene expression and hepatocyte zonation within the liver lobule. These findings highlight the complex interconnections between hepatic sexual dimorphism and zonation at the single-cell level and reveal how endogenous hormones and foreign chemical exposure can alter these interactions across the liver lobule with large effects both on protein-coding genes and lncRNAs.


Subject(s)
RNA, Long Noncoding , Transcriptome , Animals , Female , Growth Hormone/metabolism , Hepatocytes/metabolism , Liver/metabolism , Male , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sequence Analysis, RNA , Transcription Factors/metabolism
13.
Sci Rep ; 12(1): 5864, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35393476

ABSTRACT

Spatial Frequency Domain Imaging (SFDI) can provide longitudinal, label-free, and widefield hemodynamic and scattering measurements of murine tumors in vivo. Our previous work has shown that the reduced scattering coefficient (µ's) at 800 nm, as well as the wavelength dependence of scattering, both have prognostic value in tracking apoptosis and proliferation during treatment with anti-cancer therapies. However, there is limited work in validating these optical biomarkers in clinically relevant tumor models that manifest specific treatment resistance mechanisms that mimic the clinical setting. It was recently demonstrated that metronomic dosing of cyclophosphamide induces a strong anti-tumor immune response and tumor volume reduction in the E0771 murine breast cancer model. This immune activation mechanism can be blocked with an IFNAR-1 antibody, leading to treatment resistance. Here we present a longitudinal study utilizing SFDI to monitor this paired responsive-resistant model for up to 30 days of drug treatment. Mice receiving the immune modulatory metronomic cyclophosphamide schedule had a significant increase in tumor optical scattering compared to mice receiving cyclophosphamide in combination with the IFNAR-1 antibody (9% increase vs 10% decrease on day 5 of treatment, p < 0.001). The magnitude of these differences increased throughout the duration of treatment. Additionally, scattering changes on day 4 of treatment could discriminate responsive versus resistant tumors with an accuracy of 78%, while tumor volume had an accuracy of only 52%. These results validate optical scattering as a promising prognostic biomarker that can discriminate between treatment responsive and resistant tumor models.


Subject(s)
Breast Neoplasms , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Diagnostic Imaging , Female , Humans , Immunity , Longitudinal Studies , Mice
14.
Endocrinology ; 163(5)2022 05 01.
Article in English | MEDLINE | ID: mdl-35396838

ABSTRACT

STAT5 is an essential transcriptional regulator of the sex-biased actions of GH in the liver. Delivery of constitutively active STAT5 (STAT5CA) to male mouse liver using an engineered adeno-associated virus with high tropism for the liver is shown to induce widespread feminization of the liver, with extensive induction of female-biased genes and repression of male-biased genes, largely mimicking results obtained when male mice are given GH as a continuous infusion. Many of the STAT5CA-responding genes were associated with nearby (< 50 kb) sites of STAT5 binding to liver chromatin, supporting the proposed direct role of persistently active STAT5 in continuous GH-induced liver feminization. The feminizing effects of STAT5CA were dose-dependent; moreover, at higher levels, STAT5CA overexpression resulted in some histopathology, including hepatocyte hyperplasia, and increased karyomegaly and multinuclear hepatocytes. These findings establish that the persistent activation of STAT5 by GH that characterizes female liver is by itself sufficient to account for the sex-dependent expression of a majority of hepatic sex-biased genes. Moreover, histological changes seen when STAT5CA is overexpressed highlight the importance of carefully evaluating such effects before considering STAT5 derivatives for therapeutic use in treating liver disease.


Subject(s)
Feminization , STAT5 Transcription Factor , Animals , Female , Gene Expression , Growth Hormone/metabolism , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Milk Proteins/genetics , Milk Proteins/metabolism , Milk Proteins/pharmacology , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism
15.
Toxicol Sci ; 187(2): 298-310, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35285501

ABSTRACT

Perinatal exposure to environmental chemicals is proposed to reprogram development and alter disease susceptibility later in life. Supporting this, neonatal activation of the nuclear receptor constitutive androstane receptor (CAR) (Nr1i3) by TCPOBOP was previously reported to induce persistent expression of mouse hepatic Cyp2 genes into adulthood, and was attributed to long-term epigenetic memory of the early life exposure. Here, we confirm that the same high-dose neonatal TCPOBOP exposure studied previously (3 mg/kg, 15x ED50) does indeed induce prolonged (12 weeks) increases in hepatic Cyp2 expression; however, we show that the persistence of expression can be fully explained by the persistence of residual TCPOBOP in liver tissue. When the long-term presence of TCPOBOP in tissue was eliminated by decreasing the neonatal TCPOBOP dose 22-fold (0.67× ED50), strong neonatal increases in hepatic Cyp2 expression were still obtained but did not persist into adulthood. Furthermore, the neonatal ED50-range TCPOBOP exposure did not sensitize mice to a subsequent, low-dose TCPOBOP treatment. In contrast, neonatal treatment with phenobarbital, a short half-life (t1/2 = 8 h) agonist of CAR and PXR (Nr1i2), induced high-level neonatal activation of Cyp2 genes and also altered their responsiveness to low-dose phenobarbital exposure at adulthood by either increasing (Cyp2b10) or decreasing (Cyp2c55) expression. Thus, neonatal xenobiotic exposure can reprogram hepatic Cyp2 genes and alter their responsiveness to exposures later in life. These findings highlight the need to carefully consider xenobiotic dose, half-life, and persistence in tissue when evaluating the long-term effects of early life environmental chemical exposures.


Subject(s)
Constitutive Androstane Receptor/metabolism , Cytochrome P450 Family 2/metabolism , Xenobiotics , Animals , Female , Gene Expression , Liver , Mice , Mice, Inbred C57BL , Phenobarbital/metabolism , Phenobarbital/toxicity , Pregnancy , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Xenobiotics/metabolism
16.
PLoS Genet ; 17(11): e1009588, 2021 11.
Article in English | MEDLINE | ID: mdl-34752452

ABSTRACT

Sex differences in gene expression are widespread in the liver, where many autosomal factors act in tandem with growth hormone signaling to regulate individual variability of sex differences in liver metabolism and disease. Here, we compare hepatic transcriptomic and epigenetic profiles of mouse strains C57BL/6J and CAST/EiJ, representing two subspecies separated by 0.5-1 million years of evolution, to elucidate the actions of genetic factors regulating liver sex differences. We identify 144 protein coding genes and 78 lncRNAs showing strain-conserved sex bias; many have gene ontologies relevant to liver function, are more highly liver-specific and show greater sex bias, and are more proximally regulated than genes whose sex bias is strain-dependent. The strain-conserved genes include key growth hormone-dependent transcriptional regulators of liver sex bias; however, three other transcription factors, Trim24, Tox, and Zfp809, lose their sex-biased expression in CAST/EiJ mouse liver. To elucidate the observed strain specificities in expression, we characterized the strain-dependence of sex-biased chromatin opening and enhancer marks at cis regulatory elements (CREs) within expression quantitative trait loci (eQTL) regulating liver sex-biased genes. Strikingly, 208 of 286 eQTLs with strain-specific, sex-differential effects on expression were associated with a complete gain, loss, or reversal of the sex differences in expression between strains. Moreover, 166 of the 286 eQTLs were linked to the strain-dependent gain or loss of localized sex-biased CREs. Remarkably, a subset of these CREs apparently lacked strain-specific genetic variants yet showed coordinated, strain-dependent sex-biased epigenetic regulation. Thus, we directly link hundreds of strain-specific genetic variants to the high variability in CRE activity and expression of sex-biased genes and uncover underlying genetically-determined epigenetic states controlling liver sex bias in genetically diverse mouse populations.


Subject(s)
Gene Expression Regulation , Genetic Variation , Liver/metabolism , Regulatory Sequences, Nucleic Acid , Sex Characteristics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Models, Animal , Quantitative Trait Loci
17.
BMC Genomics ; 22(1): 212, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33761883

ABSTRACT

BACKGROUND: While nuclear transcription and RNA processing and localization are well established for protein coding genes (PCGs), these processes are poorly understood for long non-coding (lnc)RNAs. Here, we characterize global patterns of transcript expression, maturation and localization for mouse liver RNA, including more than 15,000 lncRNAs. PolyA-selected liver RNA was isolated and sequenced from four subcellular fractions (chromatin, nucleoplasm, total nucleus, and cytoplasm), and from the chromatin-bound fraction without polyA selection. RESULTS: Transcript processing, determined from normalized intronic to exonic sequence read density ratios, progressively increased for PCG transcripts in going from the chromatin-bound fraction to the nucleoplasm and then on to the cytoplasm. Transcript maturation was similar for lncRNAs in the chromatin fraction, but was significantly lower in the nucleoplasm and cytoplasm. LncRNA transcripts were 11-fold more likely to be significantly enriched in the nucleus than cytoplasm, and 100-fold more likely to be significantly chromatin-bound than nucleoplasmic. Sequencing chromatin-bound RNA greatly increased the sensitivity for detecting lowly expressed lncRNAs and enabled us to discover and localize hundreds of novel regulated liver lncRNAs, including lncRNAs showing sex-biased expression or responsiveness to TCPOBOP a xenobiotic agonist ligand of constitutive androstane receptor (Nr1i3). CONCLUSIONS: Integration of our findings with prior studies and lncRNA annotations identified candidate regulatory lncRNAs for a variety of hepatic functions based on gene co-localization within topologically associating domains or transcription divergent or antisense to PCGs associated with pathways linked to hepatic physiology and disease.


Subject(s)
RNA, Long Noncoding , Animals , Constitutive Androstane Receptor , Liver , Mice , Pyridines , RNA, Long Noncoding/genetics , Transcriptome
18.
Neoplasia ; 23(3): 294-303, 2021 03.
Article in English | MEDLINE | ID: mdl-33578267

ABSTRACT

Monitoring of the in vivo tumor state to track therapeutic response in real time may help to evaluate new drug candidates, maximize treatment efficacy, and reduce the burden of overtreatment. Current preclinical tumor imaging methods have largely focused on anatomic imaging (e.g., MRI, ultrasound), functional imaging (e.g., FDG-PET), and molecular imaging with exogenous contrast agents (e.g., fluorescence optical tomography). Here we utalize spatial frequency domain imaging (SFDI), a noninvasive, label-free optical technique, for the wide-field quantification of changes in tissue optical scattering in preclinical tumor models during treatment with chemotherapy and antiangiogenic agents. Optical scattering is particularly sensitive to tissue micro-architectural changes, including those that occur during apoptosis, an early indicator of response to cytotoxicity induced by chemotherapy, thermotherapy, cryotherapy, or radiation therapy. We utilized SFDI to monitor responses of PC3/2G7 prostate tumors and E0771 mammary tumors to treatment with cyclophosphamide or the antiangiogenic agent DC101 for up to 49 days. The SFDI-derived scattering amplitude was highly correlated with cleaved caspase-3, a marker of apoptosis (ρp = 0.75), while the exponent of the scattering wavelength-dependence correlated with the cell proliferation marker PCNA (ρp = 0.69). These optical parameters outperformed tumor volume and several functional parameters (e.g., oxygen saturation and hemoglobin concentration) as an early predictive biomarker of treatment response. Quantitative diffuse optical scattering is thus a promising new early marker of treatment response, which does not require radiation or exogenous contrast agents.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Apoptosis/drug effects , Biomarkers , Breast Neoplasms/diagnostic imaging , Neovascularization, Pathologic/metabolism , Optical Imaging , Prostatic Neoplasms/diagnostic imaging , Angiogenesis Inhibitors/therapeutic use , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/etiology , Female , Humans , Image Processing, Computer-Assisted , Male , Mice , Molecular Targeted Therapy , Neovascularization, Pathologic/drug therapy , Optical Imaging/methods , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/etiology , Spectrum Analysis , Tumor Burden
19.
Genome Res ; 31(1): 131-145, 2021 01.
Article in English | MEDLINE | ID: mdl-33208455

ABSTRACT

Eukaryotic gene transcription is regulated by a large cohort of chromatin-associated proteins, and inferring their differential binding sites between cellular contexts requires a rigorous comparison of the corresponding ChIP-seq data. We present MAnorm2, a new computational tool for quantitatively comparing groups of ChIP-seq samples. MAnorm2 uses a hierarchical strategy for normalization of ChIP-seq data and assesses within-group variability of ChIP-seq signals based on an empirical Bayes framework. In this framework, MAnorm2 allows for abundant differential ChIP-seq signals between groups of samples as well as very different global within-group variability between groups. Using a number of real ChIP-seq data sets, we observed that MAnorm2 clearly outperformed existing tools for differential ChIP-seq analysis, especially when the groups of samples being compared had distinct global within-group variability.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Bayes Theorem , Binding Sites , Chromatin Immunoprecipitation , Humans , Sequence Analysis, DNA
20.
Mol Cell Biol ; 41(2)2021 01 25.
Article in English | MEDLINE | ID: mdl-33199496

ABSTRACT

Growth hormone-activated STAT5b is an essential regulator of sex-differential gene expression in mouse liver; however, its impact on hepatic gene expression and epigenetic responses is poorly understood. Here, we found a substantial, albeit incomplete loss of liver sex bias in hepatocyte-specific STAT5a/STAT5b (collectively, STAT5)-deficient mouse liver. In male liver, many male-biased genes were downregulated in direct association with the loss of STAT5 binding; many female-biased genes, which show low STAT5 binding, were derepressed, indicating an indirect mechanism for repression by STAT5. Extensive changes in CpG methylation were seen in STAT5-deficient liver, where sex differences were abolished at 88% of ∼1,500 sex-differentially methylated regions, largely due to increased DNA methylation upon STAT5 loss. STAT5-dependent CpG hypomethylation was rarely found at proximal promoters of STAT5-dependent genes. Rather, STAT5 primarily regulated the methylation of distal enhancers, where STAT5 deficiency induced widespread hypermethylation at genomic regions enriched for accessible chromatin, enhancer histone marks (histone H3 lysine 4 monomethylation [H3K4me1] and histone H3 lysine 27 acetylation [H3K27ac]), STAT5 binding, and DNA motifs for STAT5 and other transcription factors implicated in liver sex differences. Thus, the sex-dependent binding of STAT5 to liver chromatin is closely linked to the sex-dependent demethylation of distal regulatory elements linked to STAT5-dependent genes important for liver sex bias.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Histones/genetics , Liver/metabolism , STAT5 Transcription Factor/genetics , Animals , Base Sequence , Chromatin/chemistry , Chromatin/metabolism , CpG Islands , Enhancer Elements, Genetic , Female , Gene Expression Profiling , Histones/metabolism , Male , Metabolic Networks and Pathways/genetics , Mice , Mice, Knockout , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , STAT5 Transcription Factor/metabolism , Sex Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...